FISIKA
PHYSHICS
Pengukuran Besaran Turunan
Measurement
of Derived Quantity
Oleh :
By :
·
Bela
Pertiwi
·
Devita
Nurvidya
·
Paramita
Nirmalawati
·
Winda
Pungki
X – 1
R-SMAN-BI 2 Cibinong
Karadenan – Cibinong – Bogor
Tahun ajaran 2010 / 2011
School
year 2010 / 2011
Kata Pengantar
Preface
Terimakasih kepada Tuhan Yang Maha Esa
yang telah memberkati dan membantu kami, sehingga dapat menyelesaikan
penyusunan karya tulis ilmiah tentang Pengukuran Besaran Turunan ini. Karya
tulis ilmiah ini kami susun atas tugas yang di berikan oleh Bapak Sopan Sopian
guru pelajaran fisika kami.
Thanks to God Almighty who has blessed
and help us, so we can complete the task of writing a scientific paper about
the Measurement of Derived Quantity. Scientific paper is structured for the
task that is given by Mr. Sopan Sopian our physics teacher lesson.
Karya tulis ilmiah yang berjudul
Pengukuran Besaran Turunan ini disusun agar dapat menambah pengetahuan
pembacanya dan memberikan pengertian tentang pengukuran besaran turunan.
Scientific paper entitled Measurement
of Derivate Quantity is prepared for readers to increase knowledge and provide
understanding of the measurement of derived quantity.
Terimakasih kami sampaikan kepada
seluruh pihak yang telah membantu dalam penyelesaian penulisan karya tulis
ilmiah ini. Dan semoga pembaca dapat memahami dan dapat bertambah
pengetahuannya setelah membaca karya tulis ilmiah ini.
Our gratitude goes to all those who
have helped in the completion of writing of this scientific paper. And hopefully the readers can
understand and can increase their knowledge after reading this scientific
paper.
Cibinong, November 2010
Penulis
Daftar Isi
Table of
Contents
Kata Pengantar (Preface)………………………………………………….. i
Daftar Isi (Table of Contents) …………………………………………….. iii
Bab I
Pendahuluan (Preliminary)
…………………………………………. 1
A.
Latar
Belakang Masalah (Background
Problem) ………………1
B.
Rumusan
Masalah (Formulation
of the Problem) ……………...1
C.
Tujuan
Penulisan (Goal
of Writing) …………………………... 2
D.
Teori
(Theory) ………………………………………………..... 2
Bab II
Pembahasan (Dicussion)
…………………………………………… 3
Bab III Penutup (Covers)
………………………………………………….. 8
Daftar Pustaka (Bibliography)
…………………………………………….. 9
Bab I Pendahuluan
Chapter I Preliminary
A.
Latar
Belakang Masalah
A. Background Problem
Kami
menulis karya tulis ilmiah yang berjudul Besaran Turunan ini karena kami dan
pembaca dapat mengetahui mengenai apa yang dimaksud dengan besaran turunan,
manfaatnya, contoh – contohnya, dan lain – lain. Kami menulis karya tulis
ilmiah ini juga untuk menyelesaikan tugas yang diberikan oleh guru Fisika kami.
We wrote a scientific
paper entitled Measurement of Derived Quantity because we and the readers will know
about what is meant by the measurement of derived quantity, the benefits, for
example, and others. We are writing this
scientific papers is also to complete the task given by our physics teacher.
B.
Rumusan
Malasah
B. Formulation of the Problem
Rumusan
masalah yang akan kami bahas dalam penulisan karya tulis ilmiah ini adalah :
The
formulation of the problem which we discuss in the writing of scientific papers
are :
a.
Apakah
yang dimaksud dengan Besaran Turunan ?
What is the magnitude of derivatives ?
b.
Apa
saja contoh – contoh dari Besaran Turunan ?
What are some examples of the
magnitude of derivatives ?
c.
Dimensi
apa saja yang terdapat dari Besaran Turunan ?
What are
there the dimensions in the magnitude of derivatives ?
d.
Apa
saja manfaat Besaran Turunan bagi kehidupan ?
What are the benefits of Quantities
Derived for life ?
C.
Tujuan
Penulisan
C. The Goal of Writing
Tujuan
penulisan karya ilmiah ini adalah menjelaskan tentang besaran turunan, contoh –
contohnya, dimensinya, dan manfaatnya. Juga untuk menyelesaikan tugas yang diberikan.
The purpose of this scientific work is to explain about the
amount of derivatives, for example, its dimensions, and benefits. Also to
complete the tasks assigned.
D.
Teori
D. Theory
Besaran turunan ialah besaran yang dapat
diturunkan atau diperoleh dari besaran-besaran pokok, yaitu : luas, kecepatan,
massa jenis, dsb.
Magnitude is the amount of derivatives that can be derived or
obtained from the basic quantities, namely: area, speed, density, etc.
Bab II Pembahasan
Chapter II Discussion
Dalam
pembahasan tentang pengukuran besaran turunan, akan dibahas juga tentang
dimensi. Besaran adalah segala sesuatu yang dapat dihitung, dinyatakan dengan
angka dan memiliki satuan. Besaran terdiri dari dua yaitu besaran pokok dan
besaran turunan. Besaran pokok adalah besaran yang satuannya telah ditetapkan
dan bukan turunan dari satuan lain.
In the discussion of
the measurement scale derivatives, will be discussed also about the dimensions. Magnitude
is anything that can be calculated, expressed with numbers and has the
units.Magnitude scale is composed of two principal and the amount of
derivatives. The amount of principal is the amount that the unit has been
established and is not derived from another unit.
Besaran turunan adalah
besaran yang diturunkan dari satu atau lebih besaran pokok. Contohnya volume
yang diturunkan dari besaran panjang; gaya yang diturunkan dari besaran massa,
panjang dan waktu, kecepatan yang diturunkan dari besaran panjang dan waktu. Sedangkan dimensi digunakan untuk
menggambarkan bagaimana suatu besaran turunan tersusun dari besaran pokok.
Manfaatnya adalah petunjuk awal untuk memeriksa benar tidaknya suatu persamaan
fisika. Persamaan yang dibentuk oleh besaran-besaran pokok tersebut haruslah
konsisten secara dimensional, yaitu kedua dimensi pada kedua ruas harus sama.
Dimensi suatu besaran yang dinyatakan dengan lambang huruf tertentu, biasanya
diberi tanda [ ].
Magnitude scale
derivative is derived from one or more quantities of goods. For example
the volume derived from the length scale; style derived from the amount of
mass, length and time, the speed derived from the length and time scale. While
the dimensions used to describe how a quantity derived scale composed of
principal. The benefit is the initial instructions to check whether or not a
physics equation. Equations formed by the quantities of goods must be
dimensionally consistent, namely the two-dimensional on both sides must be
equal. Dimension of a quantity expressed with the symbols of certain
letters, usually marked [ ].
Table
besaran pokok dan dimensi.
Principal amount and
dimension table.
No.
|
Quantity
|
Dimensions
|
Root definition and notes
|
Units
|
1.
|
Length/distance
|
[L]
|
Meter
|
m
|
2.
|
Mass
|
[M]
|
Kilogram
|
kg
|
3.
|
Time
|
[T]
|
Second
|
s
|
4.
|
Current/electric
|
[I]
|
Ampere
|
A
|
5.
|
Temperature
|
[θ]
|
Kelvin
|
K
|
6.
|
Quantity of substance
|
[N]
|
Mole
|
Mol
|
7.
|
Luminous intensity
|
[J]
|
Candle
|
cd
|
Physical Quantities
Quantity
|
Definition
|
Formula
|
Units
|
Dimensions
|
|
Length Distance
(panjang)
|
Fundamental
(dasar)
|
d
|
m (meter)
|
L
(Length)
|
|
Time (waktu)
|
Fundamental
(dasar)
|
t
|
s (second)
|
T (Time)
|
|
Mass (massa)
|
Fundamental
(dasar)
|
m
|
kg (kilogram)
|
M (Mass)
|
|
Area
|
distance2 (jarak)
|
A = d2
|
m2
|
L2
|
|
Volume
|
distance3 (jarak)
|
V = d3
|
m3
|
L3
|
|
Density (massa
jenis)
|
mass / volume
|
d = m/V
|
kg/m3
|
M/L3
|
|
Velocity
(kecepatan)
|
distance / time
|
v = d/t
|
m/s
c (speed of light) |
L/T
|
|
Acceleration
(percepatan)
|
velocity / time
|
a = v/t
|
m/s2
|
L/T2
|
|
Momentum
|
mass × velocity
|
p = m·v
|
kg·m/s
|
ML/T
|
|
Force
Weight (gaya berat) |
mass × acceleration
mass × acceleration of gravity |
F = m·a
W = m·g |
N (newton) = kg·m/s2
|
ML/T2
|
|
Pressure
or Stress (tekanan)
|
force / area
|
p = F/A
|
Pa (pascal) = N/m2 =
kg/(m·s2)
|
M/LT2
|
|
Energy
or Work
|
force × distance
|
E = F·d
|
J (joule) = N·m = kg·m2/s2
|
ML2/T2
|
|
Kinetic Energy
|
mass × velocity2 / 2
|
KE = m·v2/2
|
J (joule) = N·m = kg·m2/s2
|
ML2/T2
|
|
Potential Energy
|
mass × acceleration of gravity ×
height
|
PE = m·g·h
|
J (joule) = N·m = kg·m2/s2
|
ML2/T2
|
|
Power (daya)
|
energy / time
|
P = E/t
|
W (watt) = J/s = kg·m2/s3
|
ML2/T3
|
|
Impulse (gaya
dorong)
|
force × time
|
I = F·t
|
N·s = kg·m/s
|
ML/T
|
|
Action (gerak)
|
energy × time
momentum × distance |
S = E·t
S = p·d |
J·s = kg·m2/s
h (quantum of action) |
ML2/T
|
|
Angle (sudut)
|
fundamental
|
θ
|
° (degree), rad (radian), rev
360° = 2π rad = 1 rev |
dimensionless
|
|
Cycles (siklus)
|
fundamental
|
n
|
cyc (cycles)
|
dimensionless
|
|
Frequency
(getaran)
|
cycles / time
|
f = n/t
|
Hz (hertz) = cyc/s = 1/s
|
1/T
|
|
Angular
Velocity (kecepatan sudut)
|
angle / time
|
ω = θ/t
|
rad/s = 1/s
|
1/T
|
|
Angular
Acceleration (percepatan sudut)
|
angular velocity / time
|
α = ω/t
|
rad/s2 = 1/s2
|
1/T2
|
|
Moment
of Inertia (momen inersia)
|
mass × radius2
|
I = m·r2
|
kg·m2
|
ML2
|
|
Angular
Momentum (momentum sudut)
|
radius × momentum
moment of inertia × angular velocity |
L = r·p
L = I·ω |
J·s = kg·m2/s
ћ (quantum of angular momentum) |
ML2/T
|
|
Torque
or Moment (gaya putar)
|
radius × force
moment of inertia × angular acceleration |
τ = r·F
τ = I·α |
N·m = kg·m2/s2
|
ML2/T2
|
|
Temperature
(suhu)
|
fundamental
|
T
|
°C (celsius), K (kelvin)
|
K
(Temp.)
|
|
Heat (panas)
|
heat energy
|
Q
|
J (joule) = kg·m2/s2
|
ML2/T2
|
|
Entropy (entropi)
|
heat / temperature
|
S = Q/T
|
J/K
|
ML2/T2K
|
|
Electric
Charge +/- (muatan listrik)
|
fundamental
|
q
|
C (coulomb)
e (elementary charge) |
C
(Charge)
|
|
Current
|
charge / time
|
i = q/t
|
A (amp) = C/s
|
C/T
|
|
Voltage
or Potential (tegangan)
|
energy / charge
|
V = E/q
|
V (volt) = J/C
|
ML2/CT2
|
|
Resistance
(gaya
tahan)
|
voltage / current
|
R = V/i
|
Ω (ohm) = V/A
|
ML2/C2T
|
|
Capacitance
(kapasitansi)
|
charge / voltage
|
C = q/V
|
F (farad) = C/V
|
C2T2/ML2
|
|
Inductance
(induksi)
|
voltage / (current / time)
|
L = V/(i/t)
|
H (henry) = V·s/A
|
ML2/T2
|
|
Electric
Field (medan
listrik)
|
voltage / distance
force / charge |
E = V/d
E = F/q |
V/m = N/C
|
ML/CT2
|
|
Electric
Flux (fluks
listrik)
|
electric field × area
|
ΦE = E·A
|
V·m = N·m2/C
|
ML3/CT2
|
|
Magnetic
Field (medan
gaya)
|
force / (charge × velocity)
|
B = F/q·v
|
T (tesla) = Wb/m2 =
N·s/(C·m)
|
M/CT
|
|
Magnetic
Flux (fluks
magnetik)
|
magnetic field × area
|
ΦM = B·A
|
Wb (weber) = V·s = J·s/C
|
ML2/CT
|
Bab III Penutup
Chapter III Covers
Kesimpulan
Conclusion
Besaran turunan adalah besaran yang
diturunkan dari besaran pokok. Dalam pengukuran besaran turunan, digunakan
dimensi untuk menentukan dari besaran pokok mana, besaran turunan itu
diturunkan. Besaran turunan banyak berguna bagi kehidupan sehari – hari, yaitu
misalnya untuk mengukur tegangan listrik, suhu, luas ataupun volume suatu
benda, besarnya suatu gaya, daya, kecepatan, dan lain – lain.
Magnitude scale derivative is derived
from the amount of principal. In measuring the amount of derivatives, is used
to determine the dimensions of which the principal amount, the amount of
derivatives is derived. Quantities derived much useful for daily life days, is for
instance to measure voltage, temperature, area or volume of an object, the
magnitude of a force, power, speed, and others.
Daftar Pustaka
Bibliography
Purwoko dan Fendi. 2009. PHYSICS for senior high
school year X. Indonesia:Yudhistira.
Semoga Bermanfaat >.<
Tidak ada komentar:
Posting Komentar